텐서플로우 기초 22

텐서플로우(tensor flow) 튜토리얼 #4_Overfitting and Underfitting

4. Overfitting and Underfitting¶https://www.tensorflow.org/tutorials/keras/overfit_and_underfit?hl=ko by doorbw (https://doorbw.tistory.com) In [41]: # TensorFlow and tf.keras # 텐서플로우와 keras를 import한다. 이떄 tensorflow는 tf라는 별칭으로 사용할 것임. import tensorflow as tf from tensorflow import keras # Helper libraries # numpy와 matplotlib을 사용한다. import numpy as np import matplotlib.pyplot as plt # jupyter not..

텐서플로우(tensor flow) 튜토리얼 #3_Regression

3. Regression¶https://www.tensorflow.org/tutorials/keras/basic_regression?hl=ko by doorbw (https://doorbw.tistory.com) In [2]: # TensorFlow and tf.keras # 텐서플로우와 keras를 import한다. 이떄 tensorflow는 tf라는 별칭으로 사용할 것임. import tensorflow as tf from tensorflow import keras # Helper libraries # numpy와 matplotlib을 사용한다. import numpy as np import matplotlib.pyplot as plt # jupyter notebook에서 matplotlib을 사용하..

텐서플로우(tensor flow) 튜토리얼 #2_Text Classification

/*! * * Twitter Bootstrap * */ /*! * Bootstrap v3.3.7 (http://getbootstrap.com) * Copyright 2011-2016 Twitter, Inc. * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE) */ /*! normalize.css v3.0.3 | MIT License | github.com/necolas/normalize.css */ html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%; } body { margin: 0; } article, as..

텐서플로우(tensor flow) 튜토리얼 #1_Basic Classification

안녕하세요. 문범우입니다. 오랜만에 텐서플로우에 관련된 포스팅을 진행하게 되었습니다. 최근 기계학습과 관련되서 공부를 하며 텐서플로우를 다루는 방법에 대해서 좀 더 공부해야겠다는 필요성을 느껴서, 아예 처음부터 시작해보려 합니다. 이에 따라서 텐서플로우 공식 홈페이지에 나와있는 tutorial을 하나씩 따라해 가면서 필요한 부분들을 추가적으로 공부해 볼 예정입니다. https://www.tensorflow.org/tutorials/keras/basic_classification?hl=ko 위의 링크에서 overview 를 살펴보시면 아실 수 있듯이 해당 튜토리얼에서는 tensorflow내부의 keras 를 사용합니다. 먼저 오늘은 첫번째로 basic classification 에 대해서 진행해보도록 하겠..

텐서플로우(Tensor Flow) #20_ Dynamic RNN

안녕하세요. 문범우입니다.이번 포스팅에서는 텐서플로우의 새로운 기능인 dynamic rnn에 대해서 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Dynamic RNN 우리가 그동안 다루어보았던 RNN모델을 다시한번 생각해보도록 하겠습니다.이전의 모델을 이용해서 'hello'와 같은 문자열을 다루어볼때는, 우리가 다루고자하는 문자열의 크기에 따라서 RNN을 구성하였습니다.하지만 실제의 데이터에서는 문자열의 크기가 가변적입니다.예를 들어, 누군가가 전달하는 문자열 데이터를 처리한다고 했을 때, 그 데이터가 항상 고정된 길이는 아닙니다...

텐서플로우(Tensor Flow) #19_ Wide & Deep RNN

안녕하세요. 문범우입니다. 이번 포스팅에서는, 그 동안 배운 RNN 내용을 통해서, RNN을 보다 wide하고 deep하게 만들어 보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Long sentence 우리가 지난 번 내용을 통해 'hihello'라는 문자열에 대해 RNN을 이용하여 문자열을 예측하는 모델을 구성해 보았습니다. 그럼, 이러한 모델이 아래와 같은 긴 문장에서도 잘 작동할까요? 결과는 No. 입니다. 위와 같은 긴 문장은 우리가 그전에 만들어보았던 모델에서 제대로 작동되지 않습니다. 왜 그럴까요?간단하게 생각해보면, 우리의 ..

텐서플로우(Tensor Flow) #18_ RNN으로 'hihello' 학습하기

안녕하세요. 문범우입니다.이번 포스팅에서는 RNN을 이용하여 hihello를 학습시켜 보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. 'hihello' 학습시키기 이번에는 위와 같이 우리가 hihello 라는 문자열을 주었을 때, 각 문자에 대해 다음 문자를 예측해보도록 학습시킬 것 입니다. 이 문제가 간단해보일 수 있지만, 좀 더 자세히 살펴보면 h를 입력했을 때, 어쩔때는 i를, 어쩔 때는 e를 반환해야 합니다. 이는 RNN의 특성인, 이전 문자가 무엇이 나왔는지 알아야 값을 제대로 출력할 수 있습니다. 2. RNN basic 정리 그..

텐서플로우(Tensor Flow) #17_ RNN Basic

안녕하세요. 문범우입니다.이번 포스팅에서는 텐서플로우를 이용한 기본적인 RNN모델에 대해서 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. RNN 우리가 이전, 이론에서 알아보았듯이 RNN 모델에서는 아웃풋이 다시금 영향을 주게 됩니다.위에서 왼쪽과 같은 것을 cell이라고 표현하는데, 즉 cell의 아웃풋이 다시 cell에 영향을 주게 됩니다. 그리고 이것이 기존의 Neural Network과 큰 다른점 입니다.그런데, 이것을 실제로 어떻게 구현할까요?생각보다 의외로, 텐서플로우에서 쉽게 구현이 가능합니다. 텐서플로우에서 RNN을 구..

텐서플로우(Tensor Flow) #16_ CNN으로 MNIST 99%

안녕하세요. 문범우입니다.이번 포스팅에서는 TensorFlow에서 CNN을 이용하여 MNIST를 99%로 예측해보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. 기본 구조 이번 실습에서 우리가 진행해볼 구조는 위의 그림과 같습니다.Convolution layer와 pooling layer가 두번 반복된 구조를 통해 나온 결과를 Fully-Connected layer를 통해 10개의 숫자들 중에서 예측합니다. 2. Layer 1 1234567891011121314151617181920import tensorflow as tfimport mat..

텐서플로우(Tensor Flow) #15_ TensorFlow CNN의 기본

안녕하세요. 문범우입니다.이번 포스팅에서는 Tensorflow에서 CNN을 다루는 기본적인 내용에 대해서 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. CNN CNN은 이미지 분류나 텍스트 분류 등 다양한 분야에서 굉장히 좋은 성능을 내고 있습니다. 이에 대한 이론적인 내용은 ML&DL 카테고리에서 다루었습니다.CNN에서는 크게 3가지로 나눠볼 수 있는데, 첫번째로는 입력되는 이미지, 입력되는 벡터와 같은 것을 convoultion을 통해 filter를 사용하는 방법. 그리고 뽑아낸 값에 대해 데이터를 작게 만드는 subsamplin..