TigerCow.Door

안녕하세요. 문범우입니다.

요새 많은 기업들이 공채시즌이 다가와서 그런지, 평소보다 알고리즘 문제풀이에 대한 학원이나 온라인강의에 대한 광고가 많아진 것 같네요.


요새보면 대부분의 기업에서 SW인원들은 다른 시험보다 코딩테스트를 중요시하고 있고 많은 사람들이 제일 까다로워 하는 부분인 것 같습니다.


요새 개인적으로 공부하는 기계학습이나, 리액트네이티브때문에 블로그활동을 자주못하고 있는데, 오랜만에 프로그래머스에 들어갔다가 2017년 카카오톡 블라인드테스트 1차 코딩문제를 공개해두었길래 이번주에 하나씩 풀어보려합니다.


처음에는 쉬운문제부터 풀어보려했는데.. 나중에 확인해보니 이번에 소개해드릴 '추석트래픽' 문제가 가장 어려웠다고 하네요.


프로그래머스에서 제공하는 작년 카카오톡 코딩테스트 문제는 아래에서 만나보실수 있으며,

https://programmers.co.kr/learn/challenges


이에 대한 전체적인 해설은 아래에서 만나보실수 있습니다.

http://tech.kakao.com/2017/09/27/kakao-blind-recruitment-round-1/



오늘 소개해드릴 '추석트래픽' 문제의 정답률이 약18%라고 하지만, 개인적인 생각으로는 2017 카카오톡 블라인드테스트 1차 코딩테스트에서 총 5시간이 주어졌기때문에 어려웠다기보단 시간이 부족했다는 이야기가 많았을 듯 합니다.


문제에 대한 전체적인 안내나, 난이도정도등에 대해서는 위에 소개해드린 해설에서 확인해보시길 바랍니다.



1. 추석 트래픽


추석 트래픽 문제에 대한 설명은 따로 진행하지 않겠습니다.

제가 말로 주구장창 설명하는 것보다 직접 문제와 예제를 보시는게 이해가 빠를 것 같아서요 :'(


특별히, 예제3번에서 하나의 그림을 보여주고 있습니다.

x축을 시간으로 두고 각각의 트래픽을 bar형태로 표시해두었죠.

그리고 1초라는 시간범위(구간)를 정해서, 가장 많은 트래픽이 포함되는 구간에서의 트래픽 개수를 찾아내고 있습니다.


해당 그림을 보면서 어디서 많이 낯익다 싶었습니다.

바로, An activity-selection problem 문제입니다.

작년 알고리즘수업을 들으면서 봤던 문제인데, 잘 모르시는 분들은 한번 쯤 찾아보셔도 좋을 듯 합니다.


먼저 저는 입력되는 lines 를 하나씩 가져와서 datetime 객체로 바꾸고 이를 end_datetime으로 두었으며 lines에서 주는 실행시간을 가져와서 실행시간의 초단위 값 processing_s 와, 실행시간의 micro second단위 값 processing_ms 를 만들었습니다.

그리고 이 세개의 값를 이용해서, 트래픽의 시작시간을 구해 datetime객체로 하여 start_datetime으로 두었습니다.


이들을 이용해 같은 트래픽끼리 하나의 리스트로 묶어서, start_end_datetime 리스트에 저장하였고, 추후 answer를 탐색하기 위해 sorted_time 리스트를 만들어 start_datetime과 end_datetime의 모든 요소를 같이 저장하였습니다.

그리고 모든 lines에 대한 처리가 끝나면 sorted_time 리스트는 sort함수를 통해 오름차순으로 정렬합니다.


즉, 예제 1번과 같이 입력이 다음과 같다면,

입력: [
2016-09-15 01:00:04.001 2.0s,
2016-09-15 01:00:07.000 2s
]


start_end_datetime = [[ '2016-09-15 01:00:02.002000', '2016-09-15 01:00:04.001000' ], [ '2016-09-15 01:00:05.001', '2016-09-15 01:00:07.000']]


sorted_time = [ '2016-09-15 01:00:02.002000', '2016-09-15 01:00:04.001000', '2016-09-15 01:00:05.001', '2016-09-15 01:00:07.000']


과 같이 만들어지게 됩니다.


이제 문제에서 원하는 답을 찾을 차례입니다.

여기서 저도 한번 헤매고, 1000 micro second마다 탐색하는 방법으로 시도해봤더니 역시나 시간초과에 걸렸었습니다....


하지만 조금 더 생각해보면, 구하고자 하는 초당 최대 처리량이 변하는 순간은 단지 어떤 트래픽의 시작 또는 종료 시점뿐 입니다.

즉, 위에서 만들어두었던 sorted_time 리스트에 있는 시간에서만 초당 최대 처리량의 변화가 발생합니다.

따라서 우리는 sorted_time 리스트를 범위로 for문을 돌리면 되고, sorted_time 리스트에서 꺼낸 하나의 요소를 compare_time으로 두었고, 여기에 1초를 더한 시간을 compare_time_one으로 두었습니다.

그리고 start_end_datetime에서 하나씩 꺼내어 compare_time과 compare_time_one이라는 범위에 해당 트래픽이 속하여있는지를 탐색하고 각각의 탐색에 따른 최대값을 찾아 정답으로 반환하면 됩니다.


설명이 잘 된지는 모르겠으나, 실제로 코드를 보시면서 이해해보시면 잘 이해할 수 있을 것이라고 생각됩니다.


전체적인 python 코드는 다음과 같습니다.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import datetime
 
def solution(lines):
    start_end_time = []
    sorted_time = []
    tmp_answer = 0
    answer = tmp_answer
    for line in lines:
        split_line = line.split()
        split_day = split_line[0].split('-')
        split_time = split_line[1].split(':')
        split_s = split_time[2].split('.')
 
        Y = int(split_day[0]); M = int(split_day[1]); D = int(split_day[2])
        h = int(split_time[0]); m = int(split_time[1])
        s = int(split_s[0]); ms = int(split_s[1])*1000
        
        end_datetime = datetime.datetime(Y,M,D,h,m,s,ms)
        
        split_processing = split_line[2][:-1].split('.')
        processing_s = int(split_processing[0])
        if len(split_processing) == 1:
            start_datetime = end_datetime - datetime.timedelta(seconds=processing_s)
        else:
            processing_ms = int(split_processing[1]) * 1000
            start_datetime = end_datetime - datetime.timedelta(seconds=processing_s) - datetime.timedelta(microseconds=processing_ms)
        start_datetime = start_datetime + datetime.timedelta(microseconds=1000)
        start_end_time.append([start_datetime,end_datetime])
        sorted_time.append(start_datetime)
        sorted_time.append(end_datetime)
    sorted_time.sort()
    
    for compare_time in sorted_time:
        compare_time_one = compare_time + datetime.timedelta(seconds=1)
        if compare_time >= start_end_time[-1][1]:
            break;
        for each in start_end_time:
            if (compare_time <= each[0])and(each[0< compare_time_one):
                tmp_answer += 1
            elif (compare_time <= each[1])and(each[1< compare_time_one):
                tmp_answer += 1
            elif (each[0<= compare_time)and(compare_time_one <= each[1]):
                tmp_answer += 1
        if answer < tmp_answer:
            answer = tmp_answer
        tmp_answer = 0
    if answer == 0:
        answer += 1
    return answer
cs


만약 코드에 대해 궁금한 사항이나, 보다 효율적인 방법에 대해서 말씀해주실 점이 있다면 언제든지 댓글 또는 카카오톡, 이메일을 이용해서 말씀해주세요 :)

블로그 이미지

Tigercow.Door

Data-Analysis / AI / back-end / Algorithm / DeepLearning / etc

안녕하세요. 문범우입니다.

오랜만에 파이썬으로 풀이한 재밌는 알고리즘 문제를 가져왔습니다.

알고리즘 문제는 프로그래머스의 알고리즘 연습에 나온 야근 지수 문제이며 해당 문제는 아래 주소에서 풀어볼 수 있습니다.

문제에 대한 설명도 해당 주소에 나와있기에 문제에 대한 설명은 생략하겠습니다.

https://programmers.co.kr/learn/courses/30/lessons/12927


사실 예전에 매우 간단히 풀이한 문제인데

다시 확인해보니 문제 개편이 되면서..

테스트 케이스가 매우 까다롭게 변했더라구요.

그래도 정확도 통과는 비교적 무난했지만, 효율성 테스트에서 계속 막혀 씨름을 하다가 마침내 풀게되었습니다.

코드와 함께 간단한 해설을 첨부합니다.

추가적으로 궁금하신점이 있으신분들은 이메일이나 카카오톡으로 언제든지 문의해주세요 :)


1. 정확도 통과, 효율성 실패


먼저 정확도는 통과했지만 효율성에서 실패한 처음 코드입니다.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def solution(n, works):
    result = 0 # 결과를 담을 변수
    sumOfWorks = 0 # 모든 일의 합을 담을 변수
    for i in works: # 모든 일의 합을 구한다.
        sumOfWorks+=
    # 남은 일보다 n이 클때는 0을 반환
    if(n >= sumOfWorks): return 0
 
    # n이 0이될때 까지 반복
    while(n!=0):
        works[works.index(max(works))]-=1 # works에서 가장큰 값을 하나 줄이면서
        n-=1 # n의 값을 하나 줄인다.
        if(min(works) == max(works)): break
        # 만약 works에서 가장큰 값과 가장 작은 값이 같아지면 반복문을 나간다.
 
    # n이 0까지 줄어들어든 것이 아니라면
    if not n==0:
        # 이때는, works에서 가장큰값과 가장 작은 값이 같은 상황
        # 즉, works의 모든 값이 동일한 상황이다.
        # 따라서, n의 크기만큼의 요소를 -1씩해서 각각을 제곱하여 결과에 더하고
        # 나머지는 -1을 하지 않고 제곱해서 결과에 더한다.
        return n*((min(works)-1)**2+ (len(works)-n)*((min(works))**2)
    # n이 0까지 줄어든 것이라면 남은 works의 모든 값을 제곱해서 더한다.
    else:
        for i in works:
            result += i**2
 
    # 야근 지수를 최소화 하였을 때의 야근 지수는 몇일까요?
    return result
cs


코드에 대한 상세한 내용은 주석으로 설명하였습니다.

전체적인 알고리즘을 말씀드리면,

단순히 works 리스트에서 가장 큰 값을 찾아 이를 하나씩 줄이는 방법입니다.

추가로, 처음에 모든 남은 일의 합이 n 보다 작으면 0을 반환하게 하는 특수조건이 있습니다.

또한, works 리스트에서 값을 하나씩 줄이다가 최소값과 최대값이 동일한 시점, 즉 works 리스트의 모든 요소가 같아지는 시점도 따로 빼내어서 바로 계산하게끔 처리하였습니다.


위와 같은 풀이는 제목과 같이 정확도 테스트 케이스는 모두 통과하였으나 효율성 테스트 케이스에서 통과하지 못했습니다.

이에 따라 조금 다른 방식으로 생각해서 풀어보았습니다.



2. 정확도 통과, 효율성 통과


먼저 두번째로 풀이하여 정확도와 효율성 모두 통과한 코드는 다음과 같습니다.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
def solution(n, works):
    result=0 # 결과를 담을 변수
    works.append(0# 최소값을 위해 works에 0추가
    works.sort() # works를 오름차순으로 정렬
    for i in range(1,len(works)): 
        # works에 대해 맨뒤에서 부터 확인할 것임
        # 인덱싱하기 편하게 하도록 i는 1부터 시작
        tmp = works[-i] - works[-(i+1)] # works에서 첫번째로 큰 숫자와 두번째로 큰 숫자의 차이 구함
        if tmp*< n: # 해당 차이 x 몇번째인지가 n보다 작으면
            n -= tmp*# 그만큼 n을 빼주고
            for j in range(1,i+1):
                works[-j] -= tmp # 첫번째로 큰 숫자를 두번째로 큰숫자와 같게 만든다.
        else# 해당 차이 x 몇번째인지가 n보다 작은게 아니라면
            q = n//# n에 대해서 몇번째인지로 나눈다. 이때 몫은 q, 나머지는 n
            n = n%i
            for j in range(1,i+1):
                works[-j] -= q # 제일 뒤의 숫자부터, i번째까지 몫만큼 빼준다.
            for j in range(1,n+1):
                works[-j] -= 1 # 나머지 처리
            break # 끝
    for i in works:
        result += i**2
 
    # 야근 지수를 최소화 하였을 때의 야근 지수는 몇일까요?
    return result
cs


해당 코드또한 주석으로 설명을 달아놓았지만, 적절한 예시가 없으면 바로 이해하기 힘들수 있기에 하나의 예시를 통해 어떤식으로 알고리즘이 result를 찾아내는지 확인해보도록 하겠습니다.


먼저 입력으로 n = 100, works = [10,9000,9997,9998,9999,10000] 이 들어온다고 가정합니다.

works가 위와 같이 정렬된 상태가 아니어도 4번째줄 코드에서 오름차순으로 정렬합니다.

5번째줄의 for문부터 확인해보도록 하겠습니다.

먼저 첫번째 for문은 i가 1부터 (works의 길이)-1 이므로, 해당 예시에서는 1부터 5까지 반복됩니다.

다음 줄을 보시면 아시겠지만 works의 뒤의 요소부터 인덱싱을 할때 -i 라고 명시하기때문에 i값이 1부터 시작되도록 하였습니다.

(works[-1]은 works의 가장 뒤에 있는 요소를 인덱싱합니다.)

따라서 첫번째 반복에서 tmp = 1 이 됩니다.

그리고 9번째줄 if문을 확인하면 tmp = 1 * i = 1 => 1이 되기 때문에 n보다 작아서 10~12번째줄을 수행하게 됩니다.

10번째줄에 의해서 n이 1000에서 999로 줄어들게 되고, works는 다음과 같이 변화합니다.

works = [10,9000,9997,9998,9999,9999]

즉, 뒤에서 첫번째 요소를 두번째 요소와 같게 만듭니다.


그리고 i가 하나 증가하고 첫번째 for문의 두번째 반복이 진행됩니다.

같은 방법에 의해서, n은 999에서 997로 줄어들게 되고, works는 다음과 같이 변화합니다.

works = [10,9000,9997,9998,9998,9998]

첫번째 반복에서는 n이 1만큼 감소했지만 두번째 반복에서는 i가 2이기 때문에 n이 2만큼 감소합니다. 즉, 뒤에서 첫번째, 두번째 요소를 세번째요소와 같게 만드는 것입니다.


세번째 반복에서도 동일하여, n은 994가 되고, works은 다음과 같이 됩니다.

works = [10,9000,9997,9997,9997,9997]


이제 네번째 반복입니다.

이때 tmp = 9997 - 9000 = 997 이 됩니다.

현재 i = 4이기 때문에 9번째 줄의 코드에서, tmp*i = 3988 로써 현재 n = 994 보다 크게 되므로 10~12번째줄을 수행하지 않고 13번째, else문이 실행됩니다.

그리고 14번째 줄에 의해 q = 994//4 = 248이 되고, n = 994%4 = 2 가 됩니다.

그리고 16~17번째 줄에 의해서 현재 9997의 값을 갖고있는 요소들이 q = 248 만큼 감소합니다. 즉, works가 다음과 같이 변화합니다.

works = [10,9000,9749,9749,9749,9749]


총 줄어든 값은 248 * 4 = 992 인데, 위에서 나머지 계산을 통해 n = 2가 되었습니다. 두 값을 더해서 생각해보면 이전의 n 값인 994와 같음을 알 수 있습니다.

그리고 나머지 2를 처리하기 위해 n이 0이 될때까지 works의 가장 뒤의 요소부터 1씩 감소시킵니다.


n은 i로 나눈 나머지이기 때문에 절대로 (해당 예시에서는)9749의 값을 갖는 요소를 벗어날 수 없습니다.

따라서 works는 다음과 같이 변화합니다.

works = [10,9000,9749,9749,9748,9748]


그리고 break문을 만나 반복문을 벗어나 결과를 출력하게 됩니다.



해당 알고리즘을 어떻게 간단하게 설명해야 할지 몰라서 까다로웠던 예시를 하나 들어서 설명드렸습니다.

조금이나마 간단하게 설명해본다면 처음 입력받는 works에 대해 가장 큰 값들부터 고려하여, 그 다음 큰 값과 같게하면서 줄여나가는 방법입니다. 이는 단순히 1씩 감소시키는 것이 아니라, 큰 값들의 차이만큼 감소 시키며 그 전의 큰 값들도 같이 감소시키게 됩니다. 그리고 감소시킬 값과 n을 비교해가면서 감소시킬 값이 n보다 크면 안되므로 이럴때는 n값을 지금까지 줄여나간 요소의 개수 만큼으로 나누어 그 몫을 줄여나간 요소들에 대해 동등하게 감소시키고, 나머지는 그 요소들에 대해 1씩 줄이는 방법입니다.



블로그 이미지

Tigercow.Door

Data-Analysis / AI / back-end / Algorithm / DeepLearning / etc

문제

상근이는 요즘 설탕공장에서 설탕을 배달하고 있다. 상근이는 지금 사탕가게에 설탕을 정확하게 N킬로그램을 배달해야 한다. 설탕공장에서 만드는 설탕은 봉지에 담겨져 있다. 봉지는 3킬로그램 봉지와 5킬로그램 봉지가 있다.

상근이는 귀찮기 때문에, 최대한 적은 봉지를 들고 가려고 한다. 예를 들어, 18킬로그램 설탕을 배달해야 할 때, 3킬로그램 봉지 6개를 가져가도 되지만, 5킬로그램 3개와 3킬로그래 1개를 배달하면, 더 적은 개수의 봉지를 배달할 수 있다.

상근이가 설탕을 정확하게 N킬로그램 배달해야 할 때, 봉지 몇 개를 가져가면 되는지 그 수를 구하는 프로그램을 작성하시오.


입력

첫째 줄에 N이 주어진다. (3<=N<=5000)


출력

상근이가 배달하는 봉지의 최소 개수를 출력한다. 만약, 정확하게 N킬로그램을 만들 수 없다면 -1을 출력한다.


예제입력: 18

예제출력: 4


먼저 정답으로 인정된 코드는 아래와 같습니다.


정답 코드


문제를 정리해보면, N = a*5 + b*3 이 되도록 하는 (a+b)의 최소값을 구하라는 것입니다.

어찌되었든, N이라는 숫자가 위의 식과 같이 분해되게 하는 a,b를 찾는게 우선이라고 생각됩니다.

그 다음으로, a,b 합의 최소값을 찾는 순서가 되겠죠?


먼저, a,b 합의 최솟값을 갖는 경우는 어떠한 경우일까요?

입력으로 받은 숫자 N을 두개의 식으로 풀어낼 때, 5와 곱셈이 되는 숫자가 크게, 즉 숫자 a가 크게하는 것이 좋을 것입니다.

간단한 예를 들어서, 15라는 숫자가 있을 때, a를 크게하면 a=3, b=0 이 되어 a+b = 3이 될 것이고, b를 크게하면 a=0, b=5가 되어 a+b = 5가 될 것이기 때문입니다.


그럼 이제 풀이 알고리즘을 생각해보겠습니다.

일단, 숫자 N이 주어졌을 때, 이를 n으로 받겠습니다. 그리고, n을 먼저 5로 나누어 봅니다.

n = a*5 + k

나머지 k가 발생하겠죠?

만약 나머지 k가 0이라면 바로 끝내면 되겠지만 아닌 경우가 있을 것입니다.

그렇다면 나머지 k를 3으로 나누어 봅니다.

k = b*3 + i

이와 같이 여기서도 나머지 i가 발생합니다. 역시나, 나머지 i가 0이라면 이제 끝내면 됩니다.

그런데 i도 0이 아니라면 어떻게 할까요? 어쩔 수 없이, a를 하나 줄여 k를 5만큼 증가시켜야 합니다.

조금더 자세히 살펴볼게요.

i가 가질 수 있는 값은 0,1,2 총 3가지 입니다. 3으로 나눈 나머지이기 때문이죠.

만약 i가 0일땐, 그대로 출력을 하면 됩니다.

i가 1일땐, k값에 5를 추가하면 되겠죠?

k = b*3 + 1 이므로,

k+5 = b*3 +1 +5 = (b+2)*3 + 0 이기 때문입니다.

마찬가지로, i가 2일때는 k 값에 10을 추가하면 될 것입니다.

근데 k값에 5나 10을 추가하는 방법은 무엇이 있을까요?

네, 앞에서 계산한 a를 하나 또는 둘을 줄이면 됩니다.


이러한 알고리즘을 코드로써 구현하면 아래와 같이 구현됩니다.


1
2
3
4
5
6
7
8
9
10
11
12
= int(input())
= n//5
n%=5
= 0
while F>=0:
    if n%3 == 0:
        T = n//3
        n = n%3
        break
    F-=1
    n+=5
print((n==0and (F+T) or -1)
cs


먼저 1번라인에서 입력값을 받습니다.

그리고 먼저 F에 입력값을 5로 나눈 몫을 저장하고, n을 그 나머지로 바꿔줍니다.

그리고 F가 0보다 클동안 반복문을 실행하는데, F가 음수가 되버리면 말이 안되기 때문에 반복문을 종료하는 것입니다.

그리고 반복문 내에서는, 위에서 얻은 나머지 n을 3으로 나눴을 때 0이 될 때 T에 그 몫을 저장하고 반복문을 끝냅니다.

n을 3으로 나눴을 때 나머지가 0이 아니라면, F를 하나 줄이고 n에 5를 더하게 되죠.

이렇게 해서 맨 마지막 12번 라인에서 최종 나머지 n이 0일 때는 F+T를 출력하고, n=0이 아닐때는 5와 3을 통해 입력값을 만들 수 없는 것이므로 -1을 출력합니다.

블로그 이미지

Tigercow.Door

Data-Analysis / AI / back-end / Algorithm / DeepLearning / etc