머신러닝 기본 3

딥러닝(DeepLearning) #4_ ReLU::Rectified Linear Unit

안녕하세요. 문범우입니다.오늘은 ReLU(Rectified Linear Unit)에 대해서 알아보겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. NN for XOR 우리가 지난 시간에 XOR문제를 위와 같은 모델로 하여 풀이를 진행해보았습니다.실제로 텐서플로우를 이용하여 구현해보기도 하였습니다.그때 각 유닛의 결과에 우리가 Sigmoid 함수를 붙여서 결과값이 0~1이내로 출력되게 했었습니다. 이러한 Sigmoid함수를 activation function 이라고 합니다.각 모델들에게 어떤 값을 보내게 될 때 일정값 이상이면 active되게 하고 그..

머신러닝(ML) #6_ Logistic Regression의 cost 함수 설명

안녕하세요.이번 포스팅에서는 지난 포스팅에 이어, Logistic Regression의 cost함수에 대해 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Logistic Regression의 Cost Function 우리가 지난 Linear Regression에서 Cost 함수에 대해서 이야기 해볼때는 아래와 같은 형태로 나왔습니다. 그래프를 보면 2차함수꼴로 최저점을 보다 쉽게 찾을 수 있었습니다. 그런데 지난 포스팅에서 알아보았듯이 Logistic Regression 에서는 Hypothesis가 다르게 세워졌습니다.그럼 Cost ..

머신러닝(ML) #4_ Multi-variable linear regression

안녕하세요.지난 포스팅에서는 single-variable linear regression에 대해서 알아보았습니다.이번 포스팅에서는 multi-variable linear regression에 대해서 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Linear Regression(선형 회귀) 먼저 지난 포스팅에서 학습했던 내용을 잠깐 살펴보도록 하겠습니다.지난 포스팅에서는 선형 회귀, Linear Regression을 위해서 Hypothesis와 Cost function, Gradient descent algorithm등에 대해서 알아보..

728x90