머신러닝 강의 3

딥러닝(DeepLearning) #6_ Dropout and Ensemble

안녕하세요. 문범우입니다.이번 포스팅에서는 dropout과 model ensemble에 대해서 살펴보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Dropout 우리가 dropout을 하는 이유는 바로 아래와 같은 overfitting 때문입니다. 우리가 과거에 알아봤던 것처럼, 훈련 data에 있어서는 100%의 accuracy를 내지만, 실제로 test data에 있어서는 높은 예측율을 내지 못하게 되는 현상이죠. 위와 같이, 파란색 그래프, training 에서는 에러율이 점점 낮아지지만, 실제로 빨간색 그래프처럼 test data를..

딥러닝(DeepLearning) #3_ Backpropagation

안녕하세요. 문범우입니다.이번 포스팅에서는 Backpropagation에 대해서 알아보겠습니다.지난 포스팅에서 XOR문제를 풀어보았는데, 정확하게 W나 b에 대한 값을 구하지는 못하였습니다. 그럼 이런 상황에서 어떻게 W와 b를 구하는지, 정확하게는 backpropagation이 어떻게 사용되는 것인지 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Intro 먼저, 우리가 어떻게 W나 b와 같은 값을 구할 수 있을까요?우리가 그동안 다루어 보았던 Gradient의 개념을 이용합니다. 우리는 보통 결과로 나오는 Y값을 통해 Cost함수..

머신러닝(ML) #1_ 모두를 위한 딥러닝

안녕하세요. 문범우입니다.작년 초~중반기 부터 인공지능, 머신러닝에 대해 많은 관심을 가지고 이것저것 알아보며 최근에는 딥러닝과 관련된 서적하나를 구매하여 공부중에 있습니다.그리고 보다 깊은 학습을 위해 추가적으로 온라인에서 배포되고 있는 무료 강의를 찾게 되었는데요, 인공지능, 머신러닝을 공부하시는 분들은 꽤나 잘 아시더군요. 바로, 홍콩대학교에서 연구중이신 김성훈교수님의 강의입니다.머신러닝과 관련되서는 앤드류 응 교수님의 강의가 제일 유명하지만 아무래도 영어강의이다 보니 깊은 이해가 부족할 수도 있겠다 싶어서 먼저 한글강의를 찾게 되었습니다.앞으로 머신러닝에 대한 포스팅은 김성훈 교수님의 강의를 바탕으로 진행되니 관심 있으신 분들은 직접 강의를 들으셔도 좋을 것 같습니다.김성훈 교수님의 '모두를 위한..