딥러닝 강의 6

딥러닝(DeepLearning) #6_ Dropout and Ensemble

안녕하세요. 문범우입니다.이번 포스팅에서는 dropout과 model ensemble에 대해서 살펴보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Dropout 우리가 dropout을 하는 이유는 바로 아래와 같은 overfitting 때문입니다. 우리가 과거에 알아봤던 것처럼, 훈련 data에 있어서는 100%의 accuracy를 내지만, 실제로 test data에 있어서는 높은 예측율을 내지 못하게 되는 현상이죠. 위와 같이, 파란색 그래프, training 에서는 에러율이 점점 낮아지지만, 실제로 빨간색 그래프처럼 test data를..

딥러닝(DeepLearning) #5_ Restricted Belief Machine & Xavier initialize

안녕하세요. 문범우입니다.이번에는 지난 포스팅에 이어서 딥러닝을 잘하는 방법 중 weight의 초기값을 설정하는 방법에 대해서 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. RBM(Restricted Belief Machine) 우리가 지난 포스팅에서 위의 그림과 같은 Vanishing gradient 문제에 대해서 알아보았습니다.그리고 이 문제에 대해서는 Hilton 교수님께서는 4가지 이유를 꼬집었습니다. 위의 4가지 항목중 제일 아래에 있는 것은 우리가 지난 포스팅에서 sigmoid함수 대신, ReLU함수를 사용함으로써 해결할 ..

딥러닝(DeepLearning) #4_ ReLU::Rectified Linear Unit

안녕하세요. 문범우입니다.오늘은 ReLU(Rectified Linear Unit)에 대해서 알아보겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. NN for XOR 우리가 지난 시간에 XOR문제를 위와 같은 모델로 하여 풀이를 진행해보았습니다.실제로 텐서플로우를 이용하여 구현해보기도 하였습니다.그때 각 유닛의 결과에 우리가 Sigmoid 함수를 붙여서 결과값이 0~1이내로 출력되게 했었습니다. 이러한 Sigmoid함수를 activation function 이라고 합니다.각 모델들에게 어떤 값을 보내게 될 때 일정값 이상이면 active되게 하고 그..

딥러닝(DeepLearning) #3_ Backpropagation

안녕하세요. 문범우입니다.이번 포스팅에서는 Backpropagation에 대해서 알아보겠습니다.지난 포스팅에서 XOR문제를 풀어보았는데, 정확하게 W나 b에 대한 값을 구하지는 못하였습니다. 그럼 이런 상황에서 어떻게 W와 b를 구하는지, 정확하게는 backpropagation이 어떻게 사용되는 것인지 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Intro 먼저, 우리가 어떻게 W나 b와 같은 값을 구할 수 있을까요?우리가 그동안 다루어 보았던 Gradient의 개념을 이용합니다. 우리는 보통 결과로 나오는 Y값을 통해 Cost함수..

딥러닝(DeepLearning) #2_ XOR using Neural Nets(NN)

안녕하세요. 문범우입니다.이번 포스팅에서는 XOR문제에 대한 이야기를 해보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. XOR 문제의 개요 지난 포스팅에서 딥러닝에 대한 개념과 그 동안의 역사에 대해서 알아보며, XOR문제가 매우 까다로운 문제로 다가왔음을 알아보았습니다. 그럼 그 골치덩이 문제를 어떻게 풀 수 있을까요? 먼저, 그때에 그 문제에 부딪혔던 이유 중 하나는, XOR문제가 단순히 하나의 모델로는 풀이가 불가능하다라는 증명 및 사실들 때문이었습니다. 그렇다면, 하나의 모델이 아닌 2개, 3개, 다수의 모델을 이용하면 어떨까요? ..

머신러닝(ML) #1_ 모두를 위한 딥러닝

안녕하세요. 문범우입니다.작년 초~중반기 부터 인공지능, 머신러닝에 대해 많은 관심을 가지고 이것저것 알아보며 최근에는 딥러닝과 관련된 서적하나를 구매하여 공부중에 있습니다.그리고 보다 깊은 학습을 위해 추가적으로 온라인에서 배포되고 있는 무료 강의를 찾게 되었는데요, 인공지능, 머신러닝을 공부하시는 분들은 꽤나 잘 아시더군요. 바로, 홍콩대학교에서 연구중이신 김성훈교수님의 강의입니다.머신러닝과 관련되서는 앤드류 응 교수님의 강의가 제일 유명하지만 아무래도 영어강의이다 보니 깊은 이해가 부족할 수도 있겠다 싶어서 먼저 한글강의를 찾게 되었습니다.앞으로 머신러닝에 대한 포스팅은 김성훈 교수님의 강의를 바탕으로 진행되니 관심 있으신 분들은 직접 강의를 들으셔도 좋을 것 같습니다.김성훈 교수님의 '모두를 위한..

728x90