텐서플로우 25

[모두의 딥러닝_길벗출판사] 딥러닝 도서 리뷰

[해당 리뷰는 길벗출판사에서 서적을 지원받고 작성되었습니다.] 딥러닝의 처음을 함께 시작해줄 책 작업환경 설정부터 텐서플로우 기초까지,딥러닝 기초를 다지고 싶은 분 안녕하세요. 문범우입니다.이번에 소개해드리고자 하는 도서는 길벗출판사에서 출간한, '모두의 딥러닝'이라는 책 입니다. 최근에 개발자들 사이에서도 머신러닝, 딥러닝은 매우 중요하고 뜨거운 분야가 되고 있습니다.저도 아직 초보개발자이지만 딥러닝과 데이터분석에 대해서 공부하고자 이것저것 알아보며 학습중인데, 이러한 분들에게 매우 적극적으로 추천드리고 싶은 책입니다. '모두의 딥러닝'에서 제가 매력적으로 느낀 점들은 아래와 같습니다. 적당한 그림과 사진을 이용한 시각적 효과 보기 좋은 떡이 먹기도 좋다고 하잖아요? 저는 실제로 어떤 책을 고를 때 그..

IT 리뷰 2018.05.02

텐서플로우(Tensor Flow) #14_ Neural Network 총정리::MNIST 98%성공하기

안녕하세요. 문범우입니다.이번 포스팅에서는 우리가 Deep Neural Network 에 대해 이론으로 배웠던 내용들을 실제로 텐서플로우로 구현해보도록 하겠습니다. 우리가 아래 포스팅에서 softmax classifier를 이용하여 mnist 데이터를 예측해보는 모델을 만들어봤었는데, 이때 정확도가 약 83%도 나왔습니다. 이를 DNN으로 구현해보면서 정확도를 최대 98%까지 끌어올려보도록 하겠습니다. 텐서플로우(Tensor Flow) #10_ MNIST DATA * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. MNIST Data 다루기 우리가 MNIST D..

텐서플로우(Tensor Flow) #13_ TensorBoard 사용하기

안녕하세요. 문범우입니다.우리가 지난번 실습에서 텐서플로우를 통해 Neural Network를 이용하여 XOR 문제를 풀어보았습니다.그런데 우리가 Neural Network를 이용하면서 보다 깊고 복잡한 문제를 해결할 때 그 학습과정등을 시각적으로 볼 수 있도록 하는 Tensorboard라는 것이 있습니다.이번 포스팅에서는 그런 Tensorboard를 사용하는 방법에 대해서 알아보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Tensorboard 우선 텐서보드를 사용하면 위의 그림에서 보이는 것처럼 우리의 TensorFlow 그래프를 시각..

텐서플로우(Tensor Flow) #12_ Neural Network for XOR problem

안녕하세요.이번 포스팅에서는 우리가 딥러닝 이론에서 배웠던 XOR 문제를 텐서플로우로 해결해보도록 하겠습니다.이론적인 부분은 아래 글에서 설명드렸기에, 코드에 대한 이야기를 주로 할 것 같습니다. 딥러닝에 대한 기본적인 이론이기에 잘 이해가 안되시는 분들은 아래 글을 참고해주세요. 딥러닝(DeepLearning) #1_ 딥러닝의 시작딥러닝(DeepLearning) #2_ XOR using Neural Nets(NN) 딥러닝(DeepLearning) #3_ Backpropagation * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. XOR data set 먼저..

텐서플로우(Tensor Flow) #11_ TensorFlow Manipulation

안녕하세요.이번 포스팅에서는 텐서플로우(tensorflow)를 다루는 방법에 대해서 이야기해보도록 하겠습니다.우리가 그 동안 TensorFlow를 이용해 몇가지 실습을 진행해보았지만 뒤로 갈수록 TensorFlow에 대한 복잡도가 커질 것 입니다.따라서 이번 포스팅에서는 TensorFlow를 더 잘 다루기 위해 공부해보도록 합니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Simple ID array and slicing 첫번째로 알아볼 내용은 1차원 배열입니다. 1t = np.array([0., 1., 2., 3., 4., 5., 6.])cs 위와 ..

텐서플로우(Tensor Flow) #10_ MNIST data

안녕하세요. 문범우입니다.오늘 포스팅에서는 실전데이터를 이용해서 모델을 만들어 보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. MNIST data 오늘 우리가 사용해볼 데이터는 위의 그림과 같은 MNIST dataset 입니다.보시면 아시듯이 손으로 쓴 숫자들 입니다.이 데이터들은 아래 주소에서 손쉽게 다운받을 수 있습니다. http://yann.lecun.com/exdb/mnist/ 위의 사이트에서 4개의 알집을 모두 다운받았습니다.그럼 각 데이터가 어떤 형태를 가지고 있는지 좀 더 자세히 알아보도록 하겠습니다. MNIST의 데이터들은 ..

텐서플로우(Tensor Flow) #9_ Learning rate, Evaluation

안녕하세요. 문범우입니다. 이번 포스팅에서는 우리가 만든 모델에 대한 Learning rate 를 설정하는 방법과 evaluation을 해보는 과정을 진행해보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Training and Test data sets 이번에 알아볼 내용은 우리가 가진 데이타셋을 training 과 test로 나눠보는 것입니다.이전까지의 실습에서는 이런 구분 없이 우리가 가진 모든 데이터를 통해 traning을 하고 test를 했는데, 엄밀히 말해서 이는 틀린 방법입니다. 이제부터는 반드시 데이타셋을 나눠서 진행합니다.즉..

텐서플로우(Tensor Flow) #8_ TensorFlow로 Fancy Softmax Classification 구현하기

안녕하세요. 문범우입니다.이번 포스팅에서는 Fancy Softmax Classification을 구현하겠습니다.지난 포스팅에서는, 단순히 Softmax Classification을 구현해보았는데, 이번에는 보다 더 이쁘게, 기본적으로 제공되는 croso_entropy, one_hot, reshape을 이용해서 구현해보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. softmax_cross_entropy_with_logits 먼저 알아볼 것은 softmax cross entropy with logits 이란 함수입니다.그 전에 잠깐, 우리가 ..

텐서플로우(Tensor Flow) #7_ TensorFlow로 Softmax Classification 구현하기

안녕하세요. 문범우입니다.이번 포스팅에서는 Tensorflow를 통한 Softmax Classification 구현을 진행해보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Softmax Classification 우리가 이론부분에서 알아보았던 거처럼, Softmax는 어떤 n개의 예측하고자 하는 것이 있을때 Softmax를 사용합니다. 물론 이러한 Softmax도 위의 그림에서 볼 수 있듯이, 주어진 X값에 학습할 W를 곱해서 값을 만드는 것으로 시작합니다.그리고 그러한 식의 결과로 나오는 것은 단순히 Score로써 실수값을 갖게되는데 이..

텐서플로우(Tensor Flow) #6_ TensorFlow로 Logistic Classification 구현하기

안녕하세요.이번 포스팅에서는 TensorFlow로 Logistic Classification을 구현해보도록 하겠습니다. * 해당 포스트의 모든 내용은 김성훈 교수님의 '모두를 위한 딥러닝'을 바탕으로 제작되었습니다.관련한 상세 내용은 아래 링크를 참고해주세요.https://hunkim.github.io/ml/ 1. Logistic Classification 바로 텐서플로우로 구현하기 전에, 이론적인 내용을 간단히 살펴보겠습니다.보다 자세한 내용은 아래 포스팅에서 확인하실 수 있습니다. 머신러닝(ML) #5_ Logistic Classification의 가설 함수 정의 머신러닝(ML) #6_ Logistic Regression의 cost 함수 설명 위의 사진을 보시면 Logistic Regression에서..

728x90